▄▄▄██▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ ▄▄▄▄ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀██▄▄
▄█▀ ██▌░▐▓▓████▄ ░█████▄ ▐▒██▐██▒▐▒▒██▌████▄ ▓██░████▄▀▓██ ▐▓▓██ ░▐█░░██▄
▐█▌░▄██░░█▓███▄▄█▐█▓██▄▄█▌████ ███▌▀▀▄▄▐▓████▐██▌▐██▄▄█▌▐██▌████▌ ░ ███▓██▓
██████▓░ █████▒▄▄▄▀▓▓█████▐▓██▒███▌▓▓██▌▓███████ ▓█████▓ ██████▀ ░░░▐██▌███▌
▐█▒▒███░ █░███████▌████▀█▌▐██████▓ ▓████▐██▐████ ▓█████▌███▌████▄ ░ ██▀ ▐█▓
▀█████▌ ▀███████▀▄█▒▐██▄░ ▀████▀ ▐███▀▀▐██ ████▌▐████▀▄███ ▐▓███▒ ▐█░ ▄█▀
▀▀▀███▄▄▄▄▄▄▄▄▄▄▄▄ ███▓▀ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ░█▄██▌▐█▀▀
▀▀ ▐ ▐▌███▓
░ ▄▄ █▄▀▐███
░ ▄ ▓▓█▌ ░ █▒ ███▄▄■
■ ▒ ░ ▀▀ ···e···q···u···i···n···o···x··· ███▀▀▀
· ▀ ▄▄▓▓▌ ▒▒ ■▀
░ ■▀ █▀ ░▒▒▓▓█▓ ░ presents
▒ ░█▄ ▄█▓ ▓███▌ ░ ·
▄ ■ █▀ ■ ░▀ SPSS Amos
░ ■▄▄▐▄ ▄█▄· ░ ■ · .
▒██▌▀▐▓▓█▌. ■ .░░┌──────────┐···············┌─────────────┐················
·▀▀▄ ■.░▓▓▀ ▄▄▄ │··cracker·│ Team EQUiNOX │release·date·│ 11 / 2007 :
░▓ ░█▌▄█▓▄· ▄▓▓██▓▒ │·supplier·│ Team EQUiNOX │···OS·type···│ WinXP :
■·▀ ░▄▓▓▓██▓▓▒░│··packer··│ Team EQUiNOX │·#·of·disks··│ 15 x 4.76MB :
▓█▄ ▄██▓████▓▒▒░ │··tester··│ Team EQUiNOX │software·type│ Utility :
█▌░▐▓██████▓▓▒░ │protection│ mhh, yep? │····rating···│ You decide! :
░▄ ▐▓▓█▓▓█▓▓▒░ ·░└──────────┘···············└─────────────┘················
▐█▓▌ ▀▓▓▒▓▓▓▓░·▄ ■▄▄█░ ▓█▀ ░▄▄ ■ .
▀▀ ▐▓· ▀▀▀░ ▐▓░▐▓██▒. ■ ▐███▓▓█▄ .■ ▄▒▄▄ · . ·
▒ ░█▄ ▄█▓ ░■ . · ▀▀▀ ·▀▀▀████▓▌ ▀ · ▀▓██▓░ . ▀▓▓ ·
▄ ■ █▀ ▄▄▄▄ ░░ ▓██▄███ ░░ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ █▀ ■
░ ■▄▄▐▄ ▄█ █ ░░ ▓██ ▓█▌░░ elease notes █ · .
▒██▌▀▐██ ▀▀▀▀ ░░ ███ ░░ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
·▀▀▄ ■ ▀█▓▀
░▓ ░█▌▄█▒▄ ▄▒
▄ ▄ ▀▀ ▄▄
▐▓▓█▄ ▐▓░
■ ▀██▀ ▄ Amos provides you with powerful and easy-to-use structural
▀▀ equation modeling (SEM) software. Create more realistic models
·▀ ▒▀ ▓▒ than if you used standard multivariate statistics or multiple
░ ■ ░ · ░ regression models alone. Using Amos, you specify, estimate,
assess, and present your model in an intuitive path diagram to
show hypothesized relationships among variables. This enables
you to test and confirm the validity of claims such as "value
drives loyalty" in minutes, not hours.
Amos enables you to build models that more realistically
reflect complex relationships with the ability to use observed
variables such as survey data or latent variables like
ôsatisfactionö to predict any other numeric variable.
Structural equation modeling, sometimes called path analysis,
helps you gain additional insight into causal models and the
strength of variable relationships.
You can also impute numerical values for ordered-categorical
data or censored data, so you can create a complete numerical
dataset when one is required. Or, impute values for missing
values in the new dataset. You also have the option of
estimating posterior predictive distributions to determine
probable values for missing or partially missing data in a
latent variable model.
▒ ░░
· ▀
░ ■▀ █▀ ░░
▒ ░█▄ ▄█▓
▄ ■ █▀ ▄▄▄▄ ░░ ▀▀▀▀ ░░ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
░ ■▄▄▐▄ ▄█ █ ░░ ▓███ ░░ nstallation notes █
▒██▌▀▐██ ▀▀▀▀ ░░ ████▌░░ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
·▀▀▄ ■ ▀█▓▀ ░
░▓ ░█▌▄█▒▄ ░
▄ ▀▀ ▐▓░ follow readme.txt in \EQX
·▀ ▒▀ ▓▒
░ ■ ░ ░
░ · ■
· ▀ ░
■▀ █▀ ░░
· ░█▄ ▄█▓
░ ▄ ■ █▀ ▄▄▄▄ ░░ ▓███▀██ ░░ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄
·■▄▄▐▄ ▄█ █ ░░ ▄▄▄▄▄██ ░░ pplications █
▄ ▒██▌▀▐██ ▀▀▀▀ ░░ ▓▄▄████ ░░ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▐▓▓ ▀▀▄ ■ ▀█▓▀ ░
■ ░█▌▄█▒▄ ░
▒ ▄ ▀▀ ▐▓░
· ▀ ▒▀ ▓▒ We're in great need of new talented people, such as:
· ■ ░ ░
▒ · - Suppliers, can you supply unreleased and new software?
▀ ■ ▀ - Crackers, able to break apps with today's protections?
░ · ▒ - Shells, host shells on a fast eu/us connection?
- Dumps, 100mbit+, with atleast 500Gb of storage?
█▀ ■ ·
░
· ▀
■▀ █▀ ░░
░ ░█▄ ▄█▓
■█▄ ▄ ■ █▀ ▄▄▄▄ ░░ ▓██▀███▌░░ ▄▄▄▄▄▄▄▄
▄ ■▄▄▐▄ ▄█ █ ░░ ▀▀▀▀▀█▌ ░░ reets █
▓ ▓██▌▀▐██ ▀▀▀▀ ░░ ▓██▀███ ░░ ▀▀▀▀▀▀▀▀
▐▀ ▀▀▄ ■ ▀█▓▀ ░ ▀▀▀▀▀▀▀
░█▌▄█▒▄ ░
■ ▀ ▄ ▀▀ ▐▓░
▀ ▒▀ ▓▒
■ ░ ░
· . . BLiZZARD, DFS, DW2K, DYNASTY, ENFUSiA
· . ■ MYTH, SSG, TYPO, ViRiLiTY
░ .
▓▄ ▒
░ ▀ ·
░ · ■ ▄ ■ .
· ▀ ░ · ▀.■ /TEAM EQUiNOX
■▀ █▀ █▌▀ ·
░█▄ ▄█▓ ▀ ▄▓ ■▓▄
▄ ■ █▀▄▄ ▄██▌▐█▓▌
·■▄▄▐▄ ██▓░ ▀▀ ▀▀ . .
▒██▌▀▐████▌■█▄ ▓▓▄ ■▄██▌ . ■
▓ ▀▀▄ ■ ▀▓▓▀ ░▄▄▓█▌░ ░.░░▓█▀
■ ░█▌▄█▒▄ ░ ▓▄▄ ▀▀ · ▄▄ ░░░ ░ ░ ░░░▓███
▄ ▀▀ ▐▓ ▀█▓ ░░ · ░ ░ ░░▒▓██▌ . · ░ ░ ░░▐
· ▀ ▒▀ ▓▒ ■▀ ▀
■ ░ ░ arfer(DFS)
·